Current Status of Severe Accident Analysis for Korean Sodium-cooled Fast Reactor

International Workshop on "Prevention and Mitigation of Severe Accidents in Sodium-cooled Fast Reactors"

13 June 2012

Seok Hun Kang

SFR Technology Development Status

- The design concept of KALIMER, Korea Advance Liquid Metal Reactor, has been developed under the national R&D program since 1992.
- A systematic SFR development program was launched in 1997.
 - The conceptual design of KALIMER-150 was developed through the collaboration with General Electric in 2002.
- The development of a mid-sized KALIMER-600 concept was followed, based on the KALIMER-150 experience.
 - The conceptual design was completed in 2007
- Now, projects are under going to develop a prototype SFR which is scheduled to be constructed by 2028.

- MA bearing metal fuel
- Enhanced safety with passive systems

Conceptually designed KALIMERs

KALIMER-150

- 150 MWe, Pool-type Reactor
- Fuel : U-Zr -> U-TRU-Zr
- Core I/O Temp. : 365/510°C
- DHR System : PDRC
- 2-loop IHTS/SGS
- Net Efficiency : 38.8%

KALIMER-600

- 600 MWe, Pool-type Reactor
- Fuel : U-Zr -> U-TRU-Zr
- Core I/O Temp. : 365/510°C
- DHR System : PDRC/ADRC
- 2-loop IHTS/SGS
- Net Efficiency : 38.8%

ATWS analysis using SAS4A/SASSYS-1

Objectives

 The ATWS analysis was conducted to examine the tendency of metal fuel to act as a fuse, to avoid an energetic accident sequence that challenges system integrity.

Description

- The SAS4A/SASSYS-1 computer code developed at ANL in the IFR program for transient analysis of liquid metal cooled reactors was used.
- The core models provide the capability to analyze the initial phase of core disruptive accidents through coolant heatup, boiling, fuel element failure, fuel melting and relocation.

Analysis for KALIMER-150

ISI Access Ports

Similar size in power capacity to the prototype
SFR which is in design process and scheduled
to be constructed by 2028

SG (2) EMP(2) IHX(4) CORE EMP(4)PSDRS CONTAINMENT

- Flow rate: 2143kg/s
- Core I/O Temp. : 365/510°C
- Core outlet P : 0.101 MPa
- 4 IHXs, 4 EMPs
- Cover gas: He
- Annular space filled gas: Ar

RHRS

International Workshop on "Prevention and Mitigation of Severe Accidents in Sodium-cooled Fast Reactors" 11 ~13 June 2012

Nodalization

Core modeling

	Driver Fuel	54
	Internal Blanket	24
	Radial Blanket	48
	Control Rod	6
$\widehat{\bullet}$	USS	1
•	GEM	6
	Reflector	48
	B_4C Shield	54
\bigcirc	IVS	54
	Shield	72
	Total	367

[Reactor core loading pattern]

	Core configuration	heterogeneous
	Metallic fuel design	U-TRU-10%Zr
	No. of assembly	367
	Enrichment, %	30
	Breeding ratio	1.05
	Active core height, mm	1,200
	Axial blanket	No
	Structural material	HT9
-	Specific Power of fuel, W/kg	60,000
	Core diameter, mm	3,447
	Fuel / blanket pins per assembly	271 / 127
	Driver / blanket assemblies	48 / 18
	Reactor core I / O temp., C ^o	368 / 512
	Burnup of driver fuel, GJ	75,504,753
	Prompt neutron lifetime, s	2 x 10 ⁻⁷
	Delayed neutron fraction	0.035
	Fuel mass, kg	9,976

Layout of core assignment

(1/6 assembly)

Axial zones of core channel

Hot Pool K6 3.16532 Reflector K5 2.5651 Gas Plenum 1.000 Structure Coolant Core 0.000 K4 K3 -0.6143 Reflector -1.1176 K2 K1 1.59038 Lower Plenum

- Single pin geometry
- Axial zones: fuel, sodium bond, gas plenum, reflector

[KAERI/TR-3370/2007]

Analysis results

Calculation at full power steady state condition

\checkmark Code predicted well the steady state conditions of the plant design.

Unprotected Transient Over Power (UTOP)

- Assumption that all the control rods are accidentally removed
- Reactivity insertion rate is set to 2 ¢/s for 15 seconds, the maximum speed of shim motors withdrawing the control rods.

Temperature, °C Reactivity, \$ coolant inlet – – – coolant outlet 0.3 750 cladding Fuel PROGRAMMED NET 0.2 650 Control rod expansion Doppler Fuel density Cladding density - Radial expansion ---- Coolant density 0.1 550 0 450 100 200 300 400 500 -0.1 350 100 200 0 300 400 500 -0.2 time (s) time (s)

Assessment of CDA (Core Disruptive Accident) Energetics

Objective / Work done

- Analysis was performed for the KALIMER-150 core during super-prompt critical power excursion induced by reactivity insertion.
- Analysis code was developed to investigate energy release during the accident.
- Based on the mathematical formulations developed in the framework of the Bethe-Tait method.

Historical background

- Analytic method of CDA was originally developed by Bethe and Tait (1958).
- Further elaborated by Jankus (1962), applied to analyze EBR-II, Fermi Reactor.
- The method evolved over 1960s to include Doppler reactivity effect and more realistic equation of state (Nichoson; 1964, Wolfe; 1963, Hicks; 1965, Meyer; 1968).
- Mechanistic approach has been developed since early 1970s to analyze comprehensive phenomena during CDA sequences ; SAS, VENUS, SIMMER.

Mechanism

- 1. Sodium coolant boils out of the core.
- 2. Fuel melts.
- 3. Fuel moves from its normal configuration into one of higher reactivity for some reason.
- 4. The reactivity increases above prompt critical, causes a power excursion to develop.
- 5. The power excursion is ultimately terminated by disassembly of the core.

The forces effecting the disassembly are high pressures produced in the core by the power excursion.

Source: Fauske; 1977, Velusamy; 2011

Formulation: Bethe-Tait assumption

Phase I

- There is void space left in the core.
- Core expansion takes place internally
- Pressure does not become high until there has been sufficient thermal expansion of the molten core to fill the void space.

Phase II

- Pressure rises rapidly.
- Core disassembly occurs quickly.

Equations

$$\frac{d^2 Q}{dt^2} = \frac{k - 1 - \beta}{\ell} \frac{dQ}{dt} \sim reactor kinetics equation$$

$$Q(t) \sim generated energy$$

 $k = k_{0} + k_{i}(t) + k_{d}(t)$ $k_{0} = 1 + \beta \quad \sim \text{ initial prompt critical reactivity}$ $k_{i}(t) = \alpha t \quad \sim \text{ reactivity insertion}$ $k_{d} = \int \rho(\vec{r}, t) u(\vec{r}, t) \cdot \nabla D(\vec{r}) dV \quad \sim \text{ disassembly reactivity}$ $\rho \quad \sim \text{ density of core material}$ $u \quad \sim \text{ material displacement during disassembly}$ $D \quad \sim \text{ reactivity change which would occur if a unit volume of core material were to be removed from the core}$

Core modeling

Calculation for the KALIMER-150 core

$\mathbf{\mathbf{\nabla}}$	Driver Fuel	54
	Internal Blanket	24
	Radial Blanket	48
	Control Rod	6
٢	USS	1
•	GEM	6
\bigcirc	Reflector	48
	B_4C Shield	54
\bigcirc	IVS	54
\bigcirc	Shield	72
	Total	367

Modeling parameters

Density of molten liquid core, kg/m ³	7,133
Density of solid fuel, kg/m ³	15,850
Radius of spherical core, m	0.69
Meltdown fuel(whole core), kg	9,976

Calculation results

- The SFR technology development status was introduced.
- The R&D activities on the severe accident analysis were introduced.
- ATWS analysis using SAS4A/SASSYS-1 code was conducted, and investigated system integrity.
- Now a research plan is scheduled to develop new severe accident simulation code.
- Assessment of CDA energetics using formulated code was conducted.
- Further work will be performed to elaborate the code and develop it to the mechanistic approach tool.